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1 in every 4 deaths
are from Heart Diseases

Adapted from Global Health Estimates 2016 | World Health Organization 2018

Cardiovascular Diseases Are the Leading Cause of Death 
Worldwide
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Myocardial infarction
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O murganho como modelo de lesão cardíacaAnimal models of disease
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Perestrelo et al. (manuscript in revision)

Chronic MIHealthy ECM Acute MI

Inflammatory phase Proliferative phase Maturation phase

The adult mammalian heart does not regenerate
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Why does the heart fails to regenerate?
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Adapted from Rando TA. Nature (2005) and Poss KD. Seminars in Cell & 
Developmental Biology (2007) 
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The adult mammalian heart does not regenerate



A
1

1/
00

Cell turnover of cardiomyocytes through ontogeny
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Sampaio-Pinto V et al. Cardiac Regeneration and Repair: From Mechanisms to Therapeutic Strategies, Springer Book, 2020

Cell turnover of cardiomyocytes through ontogeny
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Steinhauser ML & Lee RT. Regeneration of the heart. EMBO Molecular Medicine. 2011. 3, 1–12 
Laflamme MA & Murry CE. Heart Regeneration. Nature. 2011. 473; 326-335.

Cell turnover of cardiomyocytes through ontogeny
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What is the origin of the newly formed 
cardiomyocytes?
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CADUCEUS

SCIPIO

Freire  A* & Nascimento DS*, et. al. (2014) Stem Cells & Development

Stem cells in the adult mammalian heart
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c-kit+ CPCs
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Sca-1+ CPCs
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Cell cycle re-entry of 
preexisting cardiomyocytes

Differentiation of Cardiac 
Progenitor Cells (CPCs)

Stem cells DO NOT contribute to cardiomyocyte

renewal
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González-Rosa JM et al. Zebrafish Heart Regeneration: 15 Years of Discoveries. Regeneration. 2017 Sep 28;4(3):105-123. 
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González-Rosa JM et al. Zebrafish Heart Regeneration: 15 Years of Discoveries. Regeneration. 2017 Sep 28;4(3):105-123. 
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Does the regenerative capacity of the heart change 
throughout life?
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An ontogenic-specific window for cardiac regeneration
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Regeneration

An ontogenic-specific window for cardiac regeneration

P1
P7

Adult
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Do neonatal mouse hearts regenerate?
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Dynamic deposition of extracellular matrix instructs the 
myocardium upon injury

Sampaio-Pinto V*  et al. Stem Cell Reports 2018

Scale bar: 30 μm

DAPI CD29 Fn s-α-actinin DAPI pH3 Tn-C s-α-actinin
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DAPI
pH3
α-s-actinin
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Sampaio-Pinto V*  et al. Stem Cell Reports 2018

0d 

14%
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Neonatal apex resection in mice
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Hearts are not fully restored at the histological level

Sampaio-Pinto V*  et al. Stem Cell Reports 2018
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Hearts are not fully restored at the histological level but 
are fully restored at the functional level

0d                                             7d                                               14d

21d                                            60d                                               180d  

Sampaio-Pinto V*  et al. Stem Cell Reports 2018
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Hearts are not fully restored at the histological level but 
are fully restored at the functional level

Sham

Sampaio-Pinto V*  et al. Stem Cell Reports 2018

Injury
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Sampaio-Pinto V*  et al. Stem Cell Reports 2018

Resected hearts have more cardiomyocytes in the LV
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Sampaio-Pinto V*  et al. Stem Cell Reports 2018

Resected hearts have more cardiomyocytes in the LV

BINUCLEATION 
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Short-Term Response to Cardiac Injury Involves ECM 
Remodeling and Fibroblast Activation 

Sampaio-Pinto V*  et al. Stem Cell Reports 2018
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Short-Term Response to Cardiac Injury Involves ECM 
Remodeling and Fibroblast Activation 

Sampaio-Pinto V*  et al. Stem Cell Reports 2018
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Sampaio-Pinto V*  et al. Stem Cell Reports 2018

Regeneration and fibrotic 
deposition are both activated 
upon apex resection

Cardiac fibroblasts seem to be 
involved in both processes
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Transcriptomic alterations during the neonatal period
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Transcriptomic alterations during the neonatal period
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How does ECM from different stages of cardiac aging 
impact on cardiac cells?
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E18
E18

Adult

Silva AC*  et al. Biomaterials 2016; Silva AC et al J. Vis Exp 2019; Garlikova et al. Tissue Eng C 2018
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Is the ECM a key player in heart regeneration?

Silva AC*  et al. Biomaterials 2016
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Silva AC*  et al. Biomaterials 2016

Is the ECM a key player in heart regeneration?
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Silva AC*  et al. Biomaterials 2016

Is the ECM a key player in heart regeneration?
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Repopulation with Neonatal cardiomyocytes (15 days)

Silva AC*  et al. Biomaterials 2016

Is the ECM a key player in heart regeneration?

Young cardiac ECM is a 
better environment for 

cardiomyocytes
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X Lian et al., PNAS 2012
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Fetal Heart ECM Promotes High Repopulation and 
Differentiation into Cardiomyocytes by iPSC-CP
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Fetal Heart ECM Promotes High Repopulation and 
Differentiation into Cardiomyocytes by iPSC-CP
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Display Higher Functional Maturation
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*p<0.05, **p<0.01, *** p<0.0005, ****p <0.0001, * vs Matrigel, # vs Aggregates, & vs Fetal Heart 
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missing value

Decellularized Tissues Accelerate 
Cardiomyocyte Transcriptional Maturation
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- Fetal ECM bioscaffolds promote better colonization
rates of cardiac cells in vitro

- Differentiation of iPSC-CP in ECM bioscaffolds
accelerates maturation and specification into
ventricular-like cells.

- Fetal heart ECM promotes improved CM calcium
handling properties and CM maturation.
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